新聞詳情

單螺杆泵轉子的數控加工分析說明

日期:2025-07-08 14:04
瀏覽次數:1904
摘要:
1 轉子的數學模型建立及形線方程
  轉子的形狀可以看成無數個及薄的圓盤相疊加而形成的,它們的圓心組成一個螺距為t的螺旋線。轉子的任意截麵都是直徑為d的圓。為了形象直觀的反映出轉 子的形線方程,我們利用單螺杆泵來確定轉子表麵形線方程式的簡圖,利用兩個座標係統:動座標係統X101Y1和轉子的中心01相連,方向維持一定,定座標 係統X02Y和轉子本身中心相重合,O2Z為轉子本身的中心線。任意橫截麵Z的圓心為01,截麵的位置由Z的座標所確定,或由角度φ所確定。
  轉子工作表麵任一點m在定坐標中的位置X、Y、Z可由θ和φ的函數來表示:
  X=X1+X01=R·sinθ+e·sinφ
  Y=Y1+Y01=R·cosθ+e·cosφ
  Z=Z01=(t/2π)·θ
  式中φ—M點相對動座標X101Y1的轉角
  0-動坐標X101Y1相對定座標XOY的轉角
  t-轉子螺距
  由式(1)得:(X—e·sinθ)2=R2·sin2φ(4)
  由式(2)得(Y—e·cosθ)2=R2cos2φ(5)
  由式(3)得θ=(2πZ)/t(6)由(4)加(5)得:(x—e·sinθ)2+(Y—e·cosθ)2=R2(7)
  將(6)代入(7)得轉子曲麵方程為:
  {X-e·sin(2πZ/t)}2+{Y—e·cos(2πZ/t)}2=R2
  令X=0,得轉子的軸線曲麵為:
  Y=±{R2-e2·sin2(2πZ/t)}1/2+ e·cos(2πZ/t)
  轉子的軸麵曲線為轉子和YO2Z平麵的交線方程。如果以此曲線繞轉子中心線O2Z作螺距為t的螺旋運動,就可行成轉子表麵。所以轉子的形線方程為:
  Y=±{R2-e2·sin2(2πZ/t)}1/2+ e·cos(2πZ/t)

尊敬的客戶:
     您好,我司是一支技術力量雄厚的高素質的開發群體,為廣大用戶提供高品質產品、完整的解決方案和上等的技術服務公司。主要產品有 電動隔膜泵,全天候呼吸閥,電動二通閥,阻火呼吸閥,單螺杆泵 等。 本企業堅持以誠信立業、以品質守業、以進取興業的宗旨,以更堅定的步伐不斷攀登新的高峰,為民族自動化行業作出貢獻,歡迎新老顧客放心選購自己心儀的產品。我們將竭誠為您服務!

浙公網安備 33032402001671號